15 research outputs found

    A Semantic loT Early Warning System for Natural Environment Crisis Management

    Get PDF
    An early warning system (EWS) is a core type of data driven Internet of Things (IoTs) system used for environment disaster risk and effect management. The potential benefits of using a semantic-type EWS include easier sensor and data source plug-and-play, simpler, richer, and more dynamic metadata-driven data analysis and easier service interoperability and orchestration. The challenges faced during practical deployments of semantic EWSs are the need for scalable time-sensitive data exchange and processing (especially involving heterogeneous data sources) and the need for resilience to changing ICT resource constraints in crisis zones. We present a novel IoT EWS system framework that addresses these challenges, based upon a multisemantic representation model.We use lightweight semantics for metadata to enhance rich sensor data acquisition.We use heavyweight semantics for top level W3CWeb Ontology Language ontology models describing multileveled knowledge-bases and semantically driven decision support and workflow orchestration. This approach is validated through determining both system related metrics and a case study involving an advanced prototype system of the semantic EWS, integrated with a reployed EWS infrastructure

    Spatio-temporal decision support system for natural crisis management with tweetComP1

    No full text
    This paper discusses the design of a social media analysis system for decision making in natural disasters where tweets are analyzed to achieve situational awareness in earthquake and tsunami events. The system is demonstrated and evaluated using a scenario-based methodology. An empirical study is undertaken to get feedback and further requirements from practitioners working in the field of hazard detection and early warning. The main contribution of the paper is that we propose a framework which builds upon a system for tsunami detection and early warning, developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC). The system is evaluated by the Kandilli Observatory and Earthquake Research Institute (KOERI) and the Portuguese Institute for the Sea and Atmosphere (IPMA) against official international requirements as well as individual national requirements to incorporate new features and functionalities related to human sensor network analysis, and to fit into existing workflows

    Tsunami hazard in the Eastern Mediterranean and its connected seas: Toward a Tsunami warning center in Turkey

    No full text
    Tsunami mitigation, preparedness and early warning initiatives have begun at the global scale only after the tragic event of Sumatra in 2004. Turkey, as a country with a history of devastating earthquakes, has been also affected by tsunamis in its past. In this paper we present the Tsunami Hazard in the Eastern Mediterranean and its connected seas (Aegean, Marmara and Black Sea) by providing detailed information on historically and instrumentally recorded significant tsunamigenic events surrounding Turkey, aiming to a better understanding of the Tsunami threat to the Turkish coasts. In addition to the review of the Tsunami hazard, we have studied a possible Tsunami source area between Rhodes and SW of Turkey using Tsunami numerical model NAMI DANCE-two nested domains. We have computed a maximum positive amplitude of 1.13 m and maximum negative amplitude of -0.5 m at the Tsunami source by this study. The distribution of maximum positive amplitudes of the water surface elevations in the selected Tsunami forecast area and time histories of water level fluctuations near selected locations (Marmaris, Dalaman, Fethiye and Kas towns) indicate that the maximum positive amplitude near the coast in the selected forecast area exceeds 3.5 m. The arrival time of maximum wave to Marmaris, Dalaman, is 10 min, while that of Fethiye and Kas towns is 15-20 min. The maximum positive amplitudes near the shallow region of around 10 m depth are 3 m (Marmaris), 1 m (Dalaman), 2 m (Fethiye) and 1 m (Kas). Maximum positive amplitudes of water elevations in the duration of 4 h simulation of the Santorini-Minoan Tsunami in around 1600 BC in the Aegean Sea are also calculated based on a simulation performed using 900 m grid resolution of Aegean sea bathymetry with a 300 m collapse of 10 km diameter of Thera (Santorini) caldera. We have also presented the results of the Tsunami modeling and simulation for Marmara Sea obtained from a previous study. Last part of this paper provides information on the establishment of a Tsunami Warning Center by KOERI, which is expected to act also as a regional center under the UNESCO Intergovernmental Oceanographic Commission - Intergovernmental Coordination Group for the Tsunami Early Warning and Mitigation System in the North-Eastern Atlantic, the Mediterranean and Connected Seas (ICG/NEAMTWS) initiative, emphasizing on the challenges together with the future work needed to be accomplished

    Tsunami early warning in the eastern Mediterranean, Aegean and black sea

    No full text
    A National Tsunami Warning Centre in Turkey (NTWC-TR) established at the Kandilli Observatory and Earthquake Research Institute (KOERI) under the ICG/NEAMTWS (The Intergovernmental Coordination Group for the Tsunami Warning System in the Northeastern Atlantic, the Mediterranean and connected seas region) initiative is operational since January 2012 based on MOD1 Tsunami Scenario Database and TAT (Tsunami Analysis Tool) received from EC-JRC through a collaborative agreement. NTWC-TR is also acknowledged as a Candidate Tsunami Watch Provider within NEAMTWS. The Centre is relying on a system on systems embodying seismic and sea level monitoring, tsunami modeling, message dissemination systems, preparedness and mitigation activities. Considerable improvement on the seismic and sea-level network has been achieved; the communication infrastructure at KOERI has been upgraded and now includes its own GTS system. Further improvement of the Tsunami Warning System at the NTWC-TR will be accomplished through KOERI's cooperation with EC-JRC and METU to improve the scenario database and through participation in the FP-7 Project TRIDEC focusing on new technologies for real-time intelligent earth information management to be used in Tsunami Early Warning Systems. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)

    MARSite–MARMARA SUPERSITE: Accomplishments and Outlook

    No full text
    MARsite Project, funded under FP7-ENV.2012 6.4-2 (Grant 308417) and successfully implemented to Marmara Region during 2014-2016 indicated that focusing on the monitoring of the region and the integration of data from land, sea and space and the processing of this composed data based on sound earth-science research is an effective tool for mitigating damage from future earthquakes. This was achieved by monitoring the earthquake hazard through the ground-shaking and forecast maps, short- and long-term earthquake rate forecasting and time-dependent seismic hazard maps to make important risk-mitigation decisions regarding building design, insurance rates, land-use planning, and public-policy issues that need to balance safety and economic and social interests. MARSite has demonstrated the power of the use of different sensors in the assessment of the earthquake hazard. In addition to the more than 30 scientific publication within the MARsite Project framework, a multidisciplinary innovative borehole seismic observatory and a dilatometer have been installed within MARSite where its a data can be used for a range of seismic studies. Due to the encouraging results obtained from this experiment, it was determined that in the future likely smaller number of stations will be required reducing the cost of national seismic networks. The technical infrastructure of the continuous GPS stations of MAGNET network has been updated within MARSite. Tsunami hazard studies in MARSite in Marmara Sea showed that the tsunami hazard in the Marmara Region is primarily due to submarine landslides triggered by an earthquake and a conceptual Tsunami Early Warning System in the Marmara region strongly coupled with the strong ground motion and existing Earthquake Early Warning System was developed. The existing Earthquake Early Warning and Rapid Response system in the Marmara Region was improved and the installation and test of a pilot seismic landslide monitoring system was taken place in the Avcilar-Beylikdüzü Peninsula, a large landslide prone area located in westward part of Istanbul and facing the North Anatolian Fault Zone (NAFZ). An integrated approach based on multi-parameter seafloor observatories was implemented to continuously monitor the micro-seismicity along with the fluid expulsion activity within the submerged fault zone. During MARSite, strong integration and links had been established with major European initiatives focused on the collection of multidisciplinary data, their dissemination, interpretation and fusion to produce consistent theoretical and practical models, the implementation of good practices so as to provide the necessary information to end users, and the updating of seismic hazard and risk evaluations in the Marmara region. In this perspective, to continue the understanding of and improvement in the preparedness for geological disasters, the existing monitoring infrastructure of Marsite requires the continuation of a strong a European initiative. This presentation will provide a venue for information exchange towards the establishment of such an initiative
    corecore